next up previous contents
Next: About this document ... Up: No Title Previous: Modifying Algorithm SL

Bibliography

1
T. M. Apostol, Calculus, Vol. II, New York: John Wiley & Sons (1969).

2
T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics 41, New York: Springer-Verlag (1976).

3
D. H. Bailey, Comparison of two new integer relation algorithms, manuscript in preparation.

4
D. H. Bailey, MPFUN: A Portable High Performance Multiprecision Package, NASA Ames Research Center, preprint.

5
P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Rept. 81-04, Dept. of Mathematics, Univ. of Amsterdam, 1981.

6
E. F. Brickell, Solving low density knapsacks, Advances in Cryptology, Proceedings of Crypto '83, Plenum Press, New York (1984), 25-37.

7
E. F. Brickell, The cryptanalysis of knapsack cryptosystems. Applications of Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM (1988), 3-23.

8
E. F. Brickell and A. M. Odlyzko, Cryptanalysis: a survey of recent results, Proc. IEEE 76 (1988), 578-593.

9
Brun, Algorithmes euclidiens pour trois et quatre nombres, $13^{\text{eme}}$ Congr. Math. Scand., Helsinki, 45-64.

10
V. Cerny, A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm, J. Optimization Theory and Appl. 45, 41-51.

11
B. Chor and R. Rivest, A knapsack-type public key cryptosystem based on arithmetic in finite fields, Advances in Cryptology: Proceedings of Crypto '84, Springer-Verlag, NY (1985), 54-65. Revised version in IEEE Trans. Information Theory IT-34 (1988), 901-909.

12
M. J. Coster, B. A. LaMacchia, A. M. Odlyzko and C. P. Schnorr, An improved low-density subset sum algorithm, Advances in Cryptology: Proceedings of Eurocrypt '91, D. Davies, ed., to appear.

13
Y. Desmedt, What happened with knapsack cryptographic schemes?, Performance Limits in Communication, Theory and Practice, J. K. Skwirzynski, ed., Kluwer (1988), 113-134.

14
A. M. Frieze, On the Lagarias-Odlyzko algorithm for the subset sum problem, SIAM J. Comput. 15(2) (May 1986), 536-539.

15
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company (1979).

16
J. Håstad, B. Just, J. C. Lagarias, and C. P. Schnorr, Polynomial time algorithms for finding integer relations among real numbers, SIAM J. Comput. 18(5) (October 1989), 859-881.

17
J. Håstad and J. C. Lagarias. Simultaneously good bases of a lattice and its reciprocal lattice, Math. Ann. 287 (1990), 163-174.

18
D. He, Solving low-density subset sum problems with modified lattice basis reduction algorithm, Northwest Telecommunication Engineering Institute (Xi'an, China), preprint.

19
A. Joux and J. Stern, Improving the critical density of the Lagarias-Odlyzko attack against subset sum problems, to be published.

20
R. Kannan, Improved algorithms for integer programming and related lattice problems, Proc. $15^{{\rm th}}$ Symp. Theory. of Comp. (1983), 193-206.

21
S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, Optimization by simulated annealing, Science 220 671-680.

22
D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed., Addison-Wesley 1981.

23
A. Korkin and G. Zolotarev, Sur les formes quadratiques, Math. Ann 6, 366-389.

24
A. Korkin and G. Zolotarev, Sur les formes quadratiques, Math. Ann 11, 242-292.

25
J. C. Lagarias, Point lattices, manuscript in preparation.

26
J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, J. Assoc. Comp. Mach. 32(1) (January 1985), 229-246.

27
A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534.

28
J. E. Mazo and A. M. Odlyzko, Lattice points in high-dimensional spheres, Monatsh. Math. 110 (1990), 47-61.

29
H. Minkowski, Diskontinuitsbereich fur arithmetic Aquivalenz, J. reine Angew. 129, 220-224.

30
J. R. Munkres, Analysis of Manifolds, Redwood City: Addison-Wesley (1991).

31
A. M. Odlyzko, The rise and fall of knapsack cryptosystems, Cryptology and Computational Number Theory, C. Pomerance, ed., Am. Math. Soc., Proc. Symp. Appl. Math. 42 (1990), 75-88.

32
M. Pohst, A modification of the LLL reduction algorithm, J. Symb. Comp. 4 (1987), 123-127.

33
S. Radziszowski and D. Kreher, Solving subset sum problems with the L3 algorithm, J. Combin. Math. Combin. Comput. 3 (1988), 49-63.

34
C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical Computer Science, 53 (1987), 201-224.

35
C. P. Schnorr, Factoring integers and computing discrete logarithms via diophantine approximation, Advances in Cryptology: Proceedings of Eurocrypt '91, D. Davies, ed., to appear.

36
A. Schönhage, Factorization of univariate integer polynomials by diophantine approximation and by an improved basis reduction algorithm, $11^{\rm th}$ International Colloquium on Automata, Languages and Programming (ICALP '84), J. Paredaens, ed., Lecture Notes in Computer Science 172, Springer-Verlag, NY (1984), 436-447.

37
J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, New York: Springer-Verlag (1973).

38
M. Seysen, Simultaneous reduction of a lattice basis and its reciprocal basis, to be published.


Brian A. LaMacchia
1999-10-30